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Abstract. Agent-based and individual-based modeling have been widely
used to simulate ecological systems. The historical architectures designed
to artificial life simulation, namely LIDA and MicroPsy, rely into classical
concurrence mechanisms based on threads, shared memory and locks. Al-
though these mechanisms seem to work fine for many multi-agent systems
(MAS), notably for those requiring synchronous communication between
agents, they present severe restrictions in case of complex asynchronous
MAS. In this work, we explore an alternative approach to handle con-
currency in distributed asynchronous MAS: the actor model. An actor
is a concurrent entity capable of sending, receiving and handling asyn-
chronous messages, and creating new actors. Within this paradigm, there
are no shared memory and, hence, no data race conditions. We introduce
L2L (a short for: Learn to Live, Live to Learn) architecture, a biolog-
ical inspired distributed non-deterministic MAS simulation framework,
in which the autonomous agents (creatures) are endowed with a func-
tional and minimal nervous system model enabling them to learn from its
own experiences and interactions with the two-dimensional world, pop-
ulated with creatures and nutrients. Both creatures and nutrients are
encapsulated in actors. The system as a whole performs as a discrete
non-deterministic dynamical system, as well as the creatures themselves.
The scalability of this actor-based framework is evaluated showing the
system scales up and out − many processes per processor node and in a
computer cluster. A second experiment is realized to validate the archi-
tecture, consisting of an open-ended foraging simulation with both one
or many creatures and hundreds of nutrients. Results from this specific
actor-based version are compared to those from a classical concurrency
version of the same architecture, showing they are equivalent, despite the
fact that the former version scales a lot better. Moreover, results show
that exploration of the world is unbiased, leading us to conjecture that
our system follows ergodic hypothesis. We argue that the actor-based
model proves to be very promising to modeling of asynchronous complex
MAS.
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1 Introduction

It is well known that simulating ecological systems in an individual-based (IB)
or an agent-based (AB) perspective, is more intuitive and faithful to reality
instead of pure mathematical approaches [1]. Furthermore, the complexity of
those systems is naturally handled with AB models (ABM) [2]. Although the
ABM is consolidated in literature, there is no general technique to handle the
continued growth of complexity of multi-agent systems (MAS) [2].

Despite the fact IB and AB modeling are not equivalent in concept, both have
been used to understand the complexities of ecological management. Bousquet &
Le Page[3] show many concepts based on ecosystems modeling and point out the
possibility of rich hierarchy simulation to understand natural phenomena from
different perspectives. However, there is no mention concerning technological
difficulties related to this kind of simulation.

In the field of cognitive science, the ABM has been used to simulate and
investigate the possibilities of various mind and brain theories. As an example,
the LIDA architecture is based on Global Workspace Theory [4]. It specifies for
the agents a cycle of sensing, processing sensor signals and decision making that
occurs in parallel and asynchronously, while respecting the order of component
stimulation to maintain the cognitive process coherence.

In the model MicroPsi - a multi-agent cognitive framework based on the Psy
theory [5, 6] - the agent is composed of several components, including sensors and
modulators which interacts with the environment, and a motivation set defined
by the needs of the agent (i.e., energy, hunger, thirst). These needs trigger the
internal cognitive process of the agent and modulate its behavior. There is also a
component that coordinate the allocation of the resources to internal components
during execution.

Modeling natural phenomena has to take into account the simultaneity of
various events. In real cases, the agent and the environment interacts through a
stimulation process simultaneously [7]. From this perspective, the actor model is
a powerful technique to design this kind of interaction. In the actor model, ”com-
putation is conceived as distributed in space where computational devices com-
municate asynchronously and the entire computation is not in any well-defined
state” [8]. Following this definition, actor model helps to design and implement
systems in which the events must happen asynchronously and simultaneously.
Furthermore, as the computation is defined as distributed, this approach gives
the model the ability to scale over many machines, without changing the funda-
mental implementation decision.

Given that the actor model is very congruent with the need in agent-based
modeling systems (ABMS), its usage now is widespread over the literature. An-
giani et al. [9] presents a framework based on actors to simulate agent-based
modeled systems. The authors claim that the actor model of computation has
affinity with designing ABMS since both are grounded on reactive behaviour,
isolating its internal state from the outside world and communicating through
message exchange. The framework is distributed and can be executed in a clus-
ter. A prof of concept is presented for study crowd-behaviour in a building
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evacuation scenario. Another framework designed for ABMS is AgentScriptCC
[10], a domain-specific language for designing rule-based agents. The language
is translated to an execution environment that is based on Akka actor frame-
work. According to the authors, defining the agent via actor model results in a
more fine-grained architecture and the execution of agent- oriented program is
enhanced, both in scalability and performance perspectives.

Other architectures that take advantages of the actor computational model,
e.g. the distributed-first and asynchronous-first perspectives, can be found in
the literature. Leon [11] creates a .NET framework based on multi-agent systems
inspired by actor model. A new framework for the analysis of financial networks is
proposed by Crafa [12]. The approach uses agent-based to actor-based reactive
systems. Results indicates that the systemic effect of initially defaulting the
banks of some country with price shock parameter is approximately the same
that is obtained by shocking all the European system. In [13] agent-systems
based on actors are proposed to optimize the resources in IoT systems. Actor
modelling can also be used to improve optimization algorithms, as ant colony
optimization [14] and multi-objective in a hierarchical approach [15]. In addition,
multi-agent system can be applied to reinforcement learning models [16, 17].

Given that the actor model has been shown to be useful for constructing
distributed and efficient MAS, we propose here a new architecture called L2L
(Live to learn, learn to live) for simulating artificial creatures. This simulator, a
biologically inspired MAS, is a new implementation of a former version previously
described by [18]. The later could only be executed in one machine with a narrow
limit on the number of agents, thus preventing ecosystems simulations. The
current implementation specifies each creature and nutrients as actors, which
interact through message passing. The results shows a remarkable enhancement
in system scalability, allowing further simulations and involving hundreds of
complex creatures in a computer cluster.

The organization of this paper is as follows: the L2L architecture is presented
together with the actor model in section 2. Experimental results are discussed
in section 3. The, section 4 concludes the work.

2 Proposed Model

2.1 L2L architecture

L2L is a biologically inspired architecture of embodied and embedded cognition
that has been used to study foraging and action selection [18]. The architecture
consists of a two-dimensional surface of a toroidal world, which is populated
by artificial creatures (active components) and nutrients (passive components).
Both of them interact asynchronously exchanging stimuli. The nutrients have
different nourishing values and the creature does not have a priori knowledge
about those values neither the food distribution around the world.

The creature is endowed with a basic nervous, emotional and sensory-motor
systems, and various internal “organs” that interact asynchronously with each
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other. This interaction represents the biological nervous and hormonal stimula-
tion and is implemented via threads and shared memory. The access to shared
memory is controlled by locks, and is implemented by all threads.

The creature internal state is modulated, but not determined, by the external
stimuli received through the sensory system. The whole system operates in a non-
deterministic dynamics through time and space. It is expected that the behaviour
of adaptation, and thus the establishment of food preferences, emerges from the
inner emotional-cognitive process. However, it is not the focus of this paper to
describe that process (for more details see [18]).

The intrinsic model’s complexity combined with implementations of deci-
sion about concurrency (use of shared memory, threads and locks) have made
a single creature computationally heavy, limited to two creatures by computer
core. Increasing this number causes the creature behavior becoming incoherent
in the sense that, behavioral dynamics loose congruence with inner nervous sys-
tem dynamics. This upper bound severely limits the studies involving ecological
simulations, e.g. socio-genesis, semiotics, population dynamics, etc. Aiming to
use more machines to run a large number of creatures in one simulation, it is
necessary to decouple them from the shared memory. The chosen alternative to
achieve this goal relies on the actor model.

2.2 The Actor Model

An actor is a mathematical concept of a universal primitive of digital com-
putation [8]. The actor is an entity capable of sending messages, receiving and
handling messages, as well as creating new actors. The actor model is by concep-
tion concurrent, and all the communications are asynchronously done through
exchange, i.e., there is no shared memory and hence no data race conditions.
The messages in the actor model are decoupled from the sender and delivered by
the system on a best efforts basis[19]. There are no guarantees as to the ordering
of messages, so, the system must be carefully prepared to handle the incoming
messages no matter their order.

There are many implementations of the actor model, e.g., Erlang - a pro-
gramming language which its concurrency mechanism works asynchronously as
actors [20], and Quasar1 library that runs over Java Virtual Machine (JVM).
The Akka toolkit2 is one of these, and we chose it because it best fit the tech-
nologies we already used. It does not respects all of the theoretical description
from above due to technological constraints and practical factors. Since Akka
runs on a JVM and is a library, it cannot strictly guarantee data separation
from the actors. Also, the toolkit implements message ordering between pairs
of actors. All actions taken by an Akka actor are in response to some received
message, whether sent by itself or by another actor, i.e the system is reactive.
Yet, it does not guarantee message delivery between two computers.

1 http://docs.paralleluniverse.co/quasar/
2 http://akka.io/
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The advantage of using the actor model is that it provides a higher level
of abstraction when compared with the classical concurrent model. Due to the
fact that there are no data race conditions, the model scales up, using efficiently
the available resources in one machine. Also, the toolkit we used provides an
implementation that works with multiple machines, enabling scaling out. In the
new implementation, the actor model is used to simulate a two-dimensional
world which is composed of artificial creatures and nutrients. Either creatures
and components are encapsulated in actors and they exchange stimuli with each
other. The creatures’ and nutrients’ implementations are kept as proposed by
Campos et al.[18], being just the communication between them implemented
using the actor model. There is an underling control structure responsible for
managing the simulations and replenish the nutrients, if necessary. This structure
is shown in Fig. 1.

As said previously, the creature is an actor, and it encapsulates its nervous
systems and its other subsystems. Those creature components still use threads as
the concurrence model and must run in the same machine. For managing those
creatures, there is a holder actor that creates and keeps track of them, and a
repository actor that delegates which holder will receive the next creation order.
The nutrient repository and holder are analogous to its creature counterparts.
The simulation manager is an actor responsible to create, start and stop a given
simulation, i.e., given how many creatures and nutrients are populating the
world, it asks the repositories to create them and wait for the ready response.
When everything is configured, it send messages to start the simulation.

For the control messages (those exchanged by control actors), we implement
a synchronous protocol. It increases the reliability of message delivery with a
penalty on the overall performance. A miscommunication between this kind of
actors would result in simulation failure. Since this kind of communication is not
prevailing, the performance cost is acceptable. The creature and nutrient actors
communicate with the collision detector actor using a fire-forget (best effort)
method, that is faster than the synchronous method. Since these actors produce
the statistics for the simulation, some message loss is tolerable.

3 Experimental Results

We propose two experiments to validate the present model and evaluate its
scalability. The experiments have been performed in a small computer cluster,
composed of eight slave machines and a master connect through a Gigabit Eth-
ernet network. The cluster machines have 3 Intel i5-3470 processors, 32 GB dual
channel DDR3 RAM. In those simulations, a number of artificial creatures has
been created, without any kind of a priori knowledge about the world, in a vir-
tual world filled with different kind of nutrients. In both experiments the nutrient
density has been maintained constant during the executions, i.e., if a nutrient is
eaten, another one of the same type is promptly created in an aleatory position
(uniform distribution).
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Fig. 1: Block diagram for the implemented model. All but the Creature and
Nutrient are control actors. Each simulation must have at least one of each type
of actor, and at most one actor represented by a square. The communication
between the Creature and Nutrient actors with the Collision detector are fire-
forget. The other communications have a acknowledge mechanism
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3.1 Model scalability

For evaluating the scalability of the implementation using the actor model, we
measure the average number of exchanged external stimuli between actors as
a function of computer nodes running, while keeping the ratio of creatures per
machine constant. We start with 10 creatures and 90 nutrients, using one ma-
chine for the creatures and another one for the rest of the system. A simulation
comprises 30 runs for each configuration, and each run is interrupted after 300
seconds, as our purpose is to evaluate only the system scalability. It is worth
noticing, however, that L2L is designed for open-ended simulations (see Fig. 2).

Fig. 2: Average of exchanged stimuli over number of creatures versus number of
computer cores. Each computer node possesses 12 cores. The experiment shown
that it is possible to increase the number of actors by adding more computer cores
in the simulation. This doesn’t cause a degradation in the chosen performance
indicator (ratio of exchanged stimuli per creature). In fact, this PI tends to a
constant, showing that the number of creatures grows faster than the average of
exchanged stimuli.
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Fig. 2 shows, in the left axis, the ratio of average of exchanged stimuli over
number of creature, as well as the total number of actors in the right axis. By
increasing both the number of computers and creatures, the ratio curve tends
to a constant, which means that the number of creatures grows faster than the
average exchanged stimuli. This is the expected behavior because the nutrient
density in the world does not change and all the creatures operate in the same
manner, thus exchanging approximately the same amount of stimuli.

3.2 Model validity

A experiment has been designed to compare the version using actor model and
the former version, based on threads and shared memory, and to verify the cor-
rectness of the first. It consists of a simple open-ended (the simulation finish
when the creature dies) foraging simulation with one creature and ninety nu-
trients. It has been repeated 50 times for both versions of architecture. Three
measures are collected during the experiment: the creature position updates, the
hunger deprivation, and the behavioural efficiency over time. The system has a
spacial dynamics. Fig. 3 shows the superimposed path covered by 30 creatures in
both implementations. It can be seen the creatures tend to cover all space. Sim-
ulations with more creatures show an increased covered area and indicate that
the system as a whole seems to be ergodic [21]. It also shows that the creatures
are not skewed in just one direction.

Hunger deprivation is the difference between the metabolic consumption of
a creature and its energetic income from nutrients, measured in arbitrary units
[18]. The metabolism is constant, thus the hunger deprivation grows at a constant
rate. It reduces when the creature eats, with intensity equivalent to nutrient
energetic value. When the deprivation reaches 7, the creature dies. Fig. 4 shows
the hunger deprivation of a typical creature, (i.e., a creature whose lifetime is
close to the mean lifetime of all creatures) of both implementations.

Behavioral efficiency is a function of the hunger deprivation that determines
the speed and the opening of the creature’s vision field, thus changing its ability
to find food. It has been modeled according to Yerkes-Dodson law [22] and differs
between simple and complex tasks efficiency. A simple task is the one made by a
creature when sensing only one nutrient while the complex task happens when
there are more than one in the sensitive field.

Fig. 5 shows the temporal mean of behavioral efficiency for both implemen-
tations. The creature behavior is similar in both versions, which means the crea-
tures of the new implementation retains a coherent behavior. In the Fig. 5a, there
is a shrinkage on time axis, caused by changes made on the system to implement
the actor model, which can be corrected by tuning the creature metabolic rate.
In either Fig. 5a and 5b, the majority of the creatures is dead from 0.15 hours
on, and the results are no longer statistically valid, due to the sampling error.



Title Suppressed Due to Excessive Length 9

Looking into the 30 superimposed tracing of both akka and no-akka imple-
mentations in Fig. 3, both experiments explore evenly the artificial world space.
The akka version looks more dense, and this is given by the fact that we are
running more agents in this experiment. If we look inside the indicators’ av-
erage over time, arousal in Fig. 4 and behavioural efficiency in Fig. 5, we can
see the curves exhibit strictly the same shape. Both the experiments have, for
either simple and complex tasks, a period of reaching the maximum efficiency, a
small period of stability for complex task and then its decay, while the efficiency
for complex task continues growing. This is also in accordance with the results
shown in the original where L2L is presented [18].

Given that functionally both implementations are similar, the main differ-
ence between the original architecture and the version presented in this paper is
that, in the last one is possible to execute many creatures in the same simulation,
and scale that with the number of machines in the cluster. In the first version of
L2L, this was not possible due to the limitations the concurrency model based on
shared memory imposes on the communication between the simulation entities.
The main shared resource was the environmental shared pool where creatures
and nutrients communicate. Removing this single point of communication, en-
abling direct communication between creatures and the environment enabled us
to run many-creature simulations without performance degradation. We consider
this the main contribution of this work. Future work is to enable direct com-
munication between the internal creature components, so we expect to improve
more the performance and be able to implement new structures that could show
more fine social behaviors such as reproduction.
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4 Conclusion

The L2L architecture was used as a foraging simulator, and while there are many
more simulators of this kind, L2L has a non-deterministic spatially-explicit and
temporal dynamics. Also, the system appeared to be ergodic, a point which
needs further investigation. It was built having in mind the perspective of sim-
ulating population dynamics. However, the scalability problems we faced made
it infeasible. Nonetheless, using the actor model, we were able to scale out the
architecture to multiple machines, clustered or not, and reopen new research pos-
sibilities, including ecological simulations. A work in this direction is currently
being done. Finally, the toolkit we have adopted fits well enough our purposes
as our system model is asynchronous and fault tolerant. Actor-based approach
may not be appropriate to all MAS, mainly those not presenting these traits.
Albeit other nontraditional implementations of actor model may be useful in
such scenarios.
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(a) implementation with actor model

(b) implementation without actor model

Fig. 3: Two dimensional plot of superimposed world exploration by 30 indepen-
dent creatures. The x and y axis are Cartesian coordinates. a) in an actor-based
implementation b) in a classical implementation (using threads and shared mem-
ory)
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(a) implementation with actor model

(b) implementation without actor model

Fig. 4: Hunger deprivation a typical creature of both implementations.
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(a) implementation with actor model

(b) implementation without actor model

Fig. 5: Behavioral efficiency of creatures in both implementations.
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